An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality
نویسندگان
چکیده
MOTIVATION Modularity analysis is a powerful tool for studying the design of biological networks, offering potential clues for relating the biochemical function(s) of a network with the 'wiring' of its components. Relatively little work has been done to examine whether the modularity of a network depends on the physiological perturbations that influence its biochemical state. Here, we present a novel modularity analysis algorithm based on edge-betweenness centrality, which facilitates the use of directional information and measurable biochemical data.
منابع مشابه
A Fast Approach to the Detection of All-Purpose Hubs in Complex Networks with Chemical Applications
A novel algorithm for the fast detection of hubs in chemical networks is presented. The algorithm identifies a set of nodes in the network as most significant, aimed to be the most effective points of distribution for fast, widespread coverage throughout the system. We show that our hubs have in general greater closeness centrality and betweenness centrality than vertices with maximal degree, w...
متن کاملLocal search and heterogeneities in weighted complex networks
We discuss a new algorithm based on a network measure, local betweenness centrality (LBC), for search in complex networks that are heterogeneous in node degree and edge weights. LBC search utilizes both the heterogeneities and performs the best in scale-free weighted networks. We further argue that the amount of information used by LBC search could be optimal.
متن کاملApproximating Betweenness Centrality in Large Evolving Networks
Betweenness centrality ranks the importance of nodes by their participation in all shortest paths of the network. Therefore computing exact betweenness values is impractical in large networks. For static networks, approximation based on randomly sampled paths has been shown to be significantly faster in practice. However, for dynamic networks, no approximation algorithm for betweenness centrali...
متن کاملApproximating Betweenness Centrality
Betweenness is a centrality measure based on shortest paths, widely used in complex network analysis. It is computationally-expensive to exactly determine betweenness; currently the fastest-known algorithm by Brandes requires O(nm) time for unweighted graphs and O(nm + n log n) time for weighted graphs, where n is the number of vertices and m is the number of edges in the network. These are als...
متن کاملKirchhoff Index as a Measure of Edge Centrality in Weighted Networks: Nearly Linear Time Algorithms
Estimating the relative importance of vertices and edges is a fundamental issue in the analysis of complex networks, and has found vast applications in various aspects, such as social networks, power grids, and biological networks. Most previous work focuses on metrics of vertex importance and methods for identifying powerful vertices, while related work for edges is much lesser, especially for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 22 24 شماره
صفحات -
تاریخ انتشار 2006